Iranian Journal of Medical Hypotheses and Ideas Neuroprotection in Parkinson's Disease: a Multi-directional Genetic Strategy for Maximum Protection of Dopaminergic Neurons against Parkinsonian Toxicity

نویسندگان

  • Mossa Gardaneh
  • Yasin Panahi
  • Sahar Shojaei
  • Elham Mazaheri-Tehrani
  • Nader Maghsudi
چکیده

The complex biology of Parkinson's disease and the obscure mechanism of dopaminergic cell death in the course of the disease indicate that multiple intracellular pathways and numerous crucial elements contribute to the demise of these neurons. Therefore, multi-factorial approaches would more likely confer long-lasting survival and potentiate the biological function of dopamine neurons. We are proposing a multi-directional strategy to protect dopamine neurons against parkinsonian toxicity that involve transcription, anti-oxidant and neurotrophic factors. Specifically, Nurr1 an important DA transcription/ anti-inflammatory factor, glutathione peroxidase-1 an anti-oxidant enzyme (GPX-1) and glial cell line-derived neurotrophic factor (GDNF) a potent neurotrophic factor have all shown their capacity for dopaminergic neuroprotection. A model we are proposing is based on dopamine neuron-astrocyte-microglia co-culture that will supply all three factors in a tripartite fashion accelerating gene-to-gene and cell-to-cell cross-talks for synergy. While microglia will overexpress Nurr1, astrocytes will act as minipumps to secrete GDNF into the medium to act on GPX-1-overexpressing dopamine neurons growing within their proximity. The neurons will ultimately be exposed to the parkinsonian neurotoxin 6-OHDA and tested for their improved survival rate in vitro and in vivo, their integration capacity to neural network and their physiological function in the midbrain circuitry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melissa officinalis aqueous extract ameliorates 6-hydroxydopamine-induced neurotoxicity in hemi-parkinsonian rat

ABSTRACT Background and Objective: Parkinson's disease (PD) is an age-related neurodegenerative disorder with massive loss of dopaminergic neurons in the substantia nigra pars compacta. L-Dihydroxyphenylalanine (L-DOPA) substitution is still the gold standard therapy for PD. However, there has been little information available on neuroprotective and regenerative therapies for PD. Due to the neu...

متن کامل

Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson's disease

Objective(s): The main characteristic of mesenchymal stem cells (MSCs) is their ability to produce other cell types. Electromagnetic field (EMF) stimulates differentiation of MSCs into other cells. In this study, we investigated whether EMF can effect on the differentiation of MSCs into dopaminergic (DA) neurons. Materials and Methods: An EMF with a frequency of 50 Hz and two intensities of 40 ...

متن کامل

Neuroprotective Effect of Thymoquinone, the Nigella Sativa Bioactive Compound, in 6-Hydroxydopamine-Induced Hemi-Parkinsonian Rat Model

Parkinson disease (PD) is the most common movement disorder with progressive degeneration of midbrain dopaminergic neurons for which current treatments afford symptomatic relief with no-prevention of disease progression. Due to the neuroprotective property of the Nigella sativa bioactive compound thymoquinone (TQ), this study was undertaken to evaluate whether TQ could improve behavioral and ce...

متن کامل

Neuroprotection and restoration of the nigrostriatal dopaminergic system in 6-OHDA lesioned rat model of Parkinson's disease: Role of GDNF and TGF expressing Zuckerkandl's organ

Zuckerkandl’s organ (ZK) is an extra adrenal para-ganglion and has the ability to express glial cell line derived neurotrophic factor (GDNF) and transforming growth factor (TGF). It is also a source of dopamine and norepinephrine. In the present study, the neuroprotective and restorative potential of ZK was studied by transplanting it into the striatum of adult rats either before or after the i...

متن کامل

Pathogenic Mutation in VPS35 Impairs Its Protection against MPP+ Cytotoxicity

Parkinson's disease primarily results from progressive degeneration of dopaminergic neurons in the substantia nigra. Both neuronal toxicants and genetic factors are suggested to be involved in the disease pathogenesis. The mitochondrial toxicant 1-methyl-4-phenylpyridinium (MPP(+)) shows a highly selective toxicity to dopaminergic neurons. Recent studies indicate that mutation in the vacuolar p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010